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Steady state hydraulic calculation has been described of an extensive pipeline network based on 
a new graph algorithm for setting up and decomposition of balance equations of the model. 
The parameters of the model are characteristics of individual sections of the network (pumps, 
pipes, and heat exchangers with armatures). In case of sections with controlled flow rate (variable 
characteristic), or sections with measured flow rate, the flow rates are direct inputs. The inter
actions of the network with the surroundings are accounted for by appropriate sources and 
sinks of individual nodes. The result of the calculation is the knowlege of all flow rates and pres
sure losses in the network. Automatic generation of the model equations utilizes an efficient 
(vector) fixing of the network topology and predominantly logical, not numerical operations 
based on the graph theory. The calculation proper utilizes a modification of the model by the 
method of linearization of characteristics, while the properties of the modified set of equations 
permit further decrease of the requirements on the computer. The described approach is suitable 
for the solution of practical problems even on lower category personal computers. The calcula
tions are illustrated on an example of a simple network with uncontrolled and controlled flow 
rates of cooling water while one of the sections of the network is also a gravitational return flow 
of the cooling water. 

A characteristic feature of chemical and petrochemical plants is usually considerable 
production of low potential heat with no further technological use that has to be 
removed. The most frequently used coolant for removal of this heat is cooling water. 
Apparatuses using cooling water (coolers, condensers) may number in tens or even 
hundreds. Transportation of cooling water necessitates frequently a very complex 
system of pipelines with pumps, exchangers and other armatures referred to as the 
pipeline network. Consumption of electricity to power the centrifugal pumps for 
cooling water may constitute a sizeable part of plant's electricity budget. Considerable 
operating and capital costs of the pipeline transform, through the price of the cooling 
water, also into the operating costs of the cooling apparatuses. The costs of cooling 
may be reduced primarily by rational technology (increased thermodynamic effi
ciency), by optimization of the operation of individual coolers and, last but not 
least, by optimization of the transport system for the cooling water. 

A condition for optimum design, or operation of a pipeline is the hydraulic calcula
tion resulting in the knowledge of the flow rates and pressure losses in all parts of the 
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network and hence also in individual pumps and exchangers (specification of opera
ting conditions of individual apparatuses). 

Chemical engineering literature has devoted so far relatively little attention to the 
problem of design and analysis of pipeline networks (in contrast to other flow pro
blems, e.g. in mixing equipment), although networks of various complexity constitute 
part of the majority of chemical technologies. Fundamental review of the calculation 
of the pipeline networks has been presented by e.g. Mah and Schacham!. The hy
draulics of a pipeline network at steady state may be described in a manner analogous 
to the description of a DC circuit (Kirchhoff laws) with the difference that the 
elements of the pipeline network are nonlinear. The solution is thus always iterative 
by a number of available numerical techniques. With increasing complexity of the 
pipeline network, however, the decisive role is that of the problem formulation, i.e. 
setting up the model equations corresponding to the network of certain intrinsic 
structure (topology) and further the method of numerical solution of the resulting 
set of equations. 

Tn our paper the hydraulic calculation of a complex cooling water pipeline network 
has been based on our own method of automated set up and decomposition of the 
model balance equations. This graph method starts from an efficient vector represen
tation of the structure of a directed graph of the network using predominantly logical 
operations to set up the balance equations of the fundamental cutsets of the graph. 
The Casis for further processing is a compactly formulated model due to Smith2 , 

which has been expanded, for our purposes, by the option of fixing certain flow 
rates within the network (zero flow rates for shut off sections, adjusted values for 
exchangers or measured values in the network). Using an example, a possibility is 
shown of fixing (implicitly) the pressure in more than one node of the network. 

THEORETICAL 

TOPOLOGY OF THE SYSTEM 

The structure, or the topology, of pipeline network may be conveniently expressed 
in the form of a directed graph. In the following we shall introduce a few principal 
notions of the theory of graphs. A more detailed analysis may be found in the spe
cialized literaturc3 . A directed graph consists of a set of nodes (or vertices) and a set 
of directed edges (or streams) interconnecting individual nodes. In case of a pipeline 
network each edge represents a transport line of the cooling water, most of them 
a straight pipe of circular cross section. The orientation of the streams is conveniently 
defined in accord with the direction of the flow of liquid. In principle, however, 
both directions (defined and real) need not be identical. Each stream of a directed 
graph is incident with two nodes (initial and terminal). Each node can be incident 
with several streams. The number of these streams constitutes the degree of the node. 
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From the standpoint of the balance the nodes of the graph of the network function 
as mixers or separators. In a real system the node is, for instance, a branching point 
of the pipeline or a storage tank of water. 

On neglecting the orientation of the edges one obtains an undirected graph. 
Since in the following we shalI be making use of the properties of undirected graphs 
let us present some useful notions. Connection of two nodes by a continuous series 
of edges and nodes, in which each edge and node appears at most once, will be termed 
a simple path. The length of the path is given by the number of edges constituting 
the path. A simple path, for which the first and the last node coincide, will be termed 
a circuit. A graph whose two arbitrary points may be interconnected by a simple 
path wilI be termed connected graph. A connected graph containing no circuit will 
be termed a tree. A subgraph of a connected graph, which contains all nodes of the 
graph (partial graph), but only as much and such edges as not to make a circuit, 
is termed a spanning tree. The edges of the graph forming the spanning tree are 
called branches, the rema;ining are called chords. The partial graph, containing all 
chords is called cotree. The circuit formed by the branches of the spanning tree and 
just one chord is called a fundamental circuit. The edge cut between the nodes of 
a connected graph is such a set of edges, which, when left out, leaves just a discon
nected graph (retaining one edge of the cut leaves the graph connected). If the cut 
contains just one branch of the spanning tree, it is calIed the fundamental cutset. 
Edge costed graph is given rise to by assigning each of its edges a real number (cost). 
Maximum spanning tree of the edge costed graph is the one having maximum sum 
of costed branches of alI possible spannin} trees. A set of edges and nodes possessing 
in an undirected graph the properties of a circuit is called, in the directed graph, 
the directed circuit. Contingent other terms from the theory of graphs will be ex
plained directly in the text. 

A pipeline network may form in principle a closed balance system. In case of 
industrial water cooling systems, however, we are dealing with open systems inter
connected by mass streams with the surroundings. These, so-called, external streams 
are realized by transport lines which are not part of the pipeline network (e.g. evapo
ration into the atmosphere). Corresponding flow rates are then accounted for in the 
balance equations by means of external inputs (sources) and outputs (sinks). A di
rected graph of an open network may be transformed to a closed balance scheme 
by connecting the node of the surroundings. 

THE PRINCIPAL EQUATIONS OF THE MODEL 

Let us consider a hydraulic system schematized by a directed graph with V vertices 
and E directed edges, satisfying the following simplifying assumptions: 1) the system 
is at steady state (constant flow rates and accumulation), 2) the fluid is incompressible 
and flows isothermally, 3) change of pressure takes place exclusively in streams, 4) 
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no violation of the suction head occurs in the network due to the breakage of a liquid 
column, 5) losses of liquid through leaks are negligible. 

The mass balance of the system can then be expressed by V-1 independent equa
tions for the nodes 

E 

L Ajjn1 j = -mi, i = 1,2, ... , V - 1, 
j= 1 

(1) 

where Aij' mj , and mi are elements of the reduced incidence matrix of the nodes A, 
vector of (internal) mass flow rates in the network m, and the vector of source mass 
flow rates of the nodes m*, respectively. The elements of the incidence matrix A 
of dimensions (V - 1) E are following: 

Ajj = 0 the stream j is not incident with the node i, 
Ajj = 1 the node i is the terminal node of the stream j, 
Ajj = -1 the node i is the initial node of the stream j. 

The elements of m and m* are positive provided that the real direction of the flow 
is identical with the orientation of the stream of the graph, or, respectively, we are 
dealing with a source of mass in the node (feed from the surroundings of the graph). 
In case of a closed system, of course, the vector m* is zero vector. 

From the conditions of the model it follows that every node is characterized by 
a single pressure datum, i.e. the sum of pressure changes of liquid along an arbitrary 
circuit of the graph must equal zero. For E - (V - 1) fundamental circuits of the 
graph one can write the following set of independent equations 

E 

L Bkjh j = 0, k = 1,2, ... , E - (V - 1), 
j=! 

(2) 

where Bkj and hj are elements of the incidence matrix of fundamental circuits B, 
and vector of pressure losses by dissipation of mechanical energy h, respectively. 
The elements of the incidence matrix of dimensions (E - V + 1) E are given by the 
coefficients 

Bkj = 0 the stream j is not part of the circuit k, 
Bkj = 1 the stream j is part of the circuit k and oriented positively, 
Bkj = -1 the stream j is part of the circuit k with opposite direction 

(orientation of the fundamental circuit is chosen in accord with the orientation of the 
present chord). 

The dependence of the elements of the vector h on the flow rate may be approximated 
by an empirical function 

(3) 
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where Olj. Pj' and YJ are functions of the geometry of the sections of the pipeline 
network (pumps, pipes, armatures), physical properties and the flow rate of liquid, 
speed of revolution of the pump, etc. (For details see the example of the calculation). 

The aim of the modelling of the system is to find values of the flow rates and pres
sure losses for all sections of the pipeline network. The flow rates m* will be always 
taken to be a compulsory part of the problem statement. 

MODIFICATION OF THE MODEL 

The set of V - 1 independent balance equations can be made use of to express the 
same number of independent mass flow rates summarized in the vector mT • The 
characteristics (3) may then serve to calculate corresponding pressure losses hr. 
Additional E - (V - 1) values of pressure losses and corresponding flow rates may 
be expressed from the set of equations (2) and (3) (vectors mc and he), or some 
(possibly all) of these flow rates may be directly given (fixed) as inputs (vectors 
mCG and hca). 

The starting equations of the model (1) and (2) can then be rewritten as follows 
(decomposition) 

(4a) 

(4b) 

It can be proved that the submatrix AT of dimensions (V - 1) x (V - 1) is regular 
and represents the incidence matrix of the spanning tree of the graph 1.3. The 
elements of the vector mT thus correspond to the flow rates in the branches of the 
spanning tree; the remaining flow rates mc and mCG thus necessarily are chords. 

Upon introducing now the so-called fundamental cutset matrix1 •3 

(5) 

and upon considering the orthogonality of the matrices3 Band C 

(6) 

the set of Eqs (4) can be further arranged to 

(7a) 

(7b) 

which no longer contains the incidence matrix B. 
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Upon replacing further the nonlinear characteristic (3) by its linearized form2 

(Ba) 

where R jj is an element of the diagonal matrix defined as follows 

i=j 
i,j = 1,2 ... E (Bb,c) 

the set of E equations (7) can be finally arranged to give 

(9a) 

where the symmetric square matrix of the set A of dimensions at most (E - V + 1) x 
(E - V + 1) and the vector of right hand sides (; are given by 

(9b) 
and 

(9c) 

After solving the set of linear equations (9) for the unknowns me one calculate in 
a sequential manner the flow rates mT 

(10) 

The loss of pressure by dissipation of mechanical energy of the streams (chords) for 
the fixed flow rate (vector meG) can then be found as 

(11) 

In case that no flow rate in the network has to be fixed the above approach reduces 
to the model published by Smith2 • With the maximum number of flow rates in the 
network fixed, i.e. for all chords of the graph, the above model represents a just 
determined balance problem the solution of which is not affected by hydrodynamic 
properties of the network. 

THE ALGORITHM OF DECOMPOSITION 

The topology of the graph is set up most efficiently by a list of directed edges, giving 
for each edge its initial and terminal node1• Of principal importance for decomposi
tion of the set of balance equations of the model is finding the spanning tree of the 
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graph. As optimal, from the standpoint of the speed and stability of the calculation, 
appears the spanning tree corresponding to the set of fundamental circuits of mini
mum total length4 . Search for these properties in the general case necessitates ex
amination of the properties of all possible spanning trees of the graph (NP-complete 
problem4 ). In case of solution of practical problems, however, one can certainly 
do with an approximately optimum spanning tree found by means of some of the 
heuristic procedures. In our case we shall do with a simple and fast algorithm resting 
on setting up the maximum spanning tree of the edge cos ted graphs. The costing 
of edges here will be carried out in such a way that each edge is assigned a number 
indicating the sum of the degrees of both nodes with which it is incident. At the same 
time, those edges whose flow rates are taken to be part of the problem statement are 
discriminated, as far as their position in the constructed tree is concerned, by as
signing low, e.g. zero, cost. Finding the spanning tree is followed by opposite proce
dure during which the spanning tree is gradually reduced to form a balance of funda
mental cutsets through the balance of separated nodes. The result are the submatrices 
Cc, CCG and the vector Ai1m*. 

The applied graph algorithm may be briefly characterized as follows: 

1) The edges of the graph are costed in a suitable way. The edge with maximum 
cost is found and one of its nodes opens the list of nodes of the tree. The list of 
branches is left empty for the moment. 

2) The edge of the graph with maximum cost incident with just a single node of the 
tree is found. The edge is written into the list of branches and the list of nodes of the 
tree is expanded by its second node. The procedure is repeated until the edge of 
r~quested properties is found. 

3) The found tree is the spanning tree of the graph. The edges of the graph that 
do not appear in the list of branches are listed in the list of chords. The list of edges, 
which are neither branches nor chords, is in this stage (spanning tree) empty. 

4) The node is found incident with just a single branch of the tree (the last item 
of the current list of nodes of the tree or branches). The balance equation for this 
node is set up in such a way that the flow rate in the branch has a positive sign and 
the source term appears on the right hand side (substituting elements + 1, -1, and 0 
into the corresponding row of the fundamental cutset matrix, or the external input 
(output) flow rate value into the vector of right hand sides). 

5) From the incident edges of the balanced node is selected the one that is neither 
chord nor branch of the tree (cancelled branch of the starting spanning tree). Its 
corresponding flow rate in the given balance equation is then eliminated by addition 
or subtraction of the earlier formulated balance equation. The procedure is repeated 
until the appropriate edge is found. 

6) The result is the balance equation of the fundamental cutset in which, apart 
from the source term, appear only the flow rates in the chords and a single branch 
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'of the spanning tree. The list of nodes of the tree is reduced by the balanced node 
.and the same is done also with the list of branches. The given branch is then written 
into the list of cancelled branches. 

7) If the list of the branches of the tree is still not empty the routine returns to 
point 4. In the opposite case the setting up and decomposition of the set of balance 
-equations of the directed graph is finished. 

REALIZATION OF THE CALCULATION 

Having set up and decomposed the mass balance equations presented by the graph 
.algorithm one can proceed to the numerical solution of the model. With minor 
modifications one can use the method by Smith2 : 

1) Fixing flow rates m* and meG' 

2) Initial guess of the flow rates m~ and m~ (preferably smaIl but non zero values, 
not necessarily satisfying equation of continuity). 

3) Calculation of the diagonal elements Rn Re according to Eqs (Ba,b). 
4) Correction of the flow rates in the chords me by solving the set (9). 

5) Correction of the flow rates in branches mT by calculation from Eq. (10). 
6) Judging the distance of the obtained solution mT and me from the input data 

-of the given approximation (marked by apostrophe) 

In case of acceptably low value of M see point B. 

7) Calculation of the damping factor 

J=T,C. 

N = (1/2) exp (-M) 

(12a) 

(12b) 

:and the combination of input data of the given approximation (marked by apo
strophe) with the result of the calculation (damping of the oscillation of the solution) 

N (mJ)' + (1 - N) mJ -> (mJ)', J = T, C. (12c) 

Repeating of the routine from point 3. 

8) Calculation of values oflosses of mechanical energy according to Eq. (B) or (11). 
For input reference value of pressure in one node, pressures in the remaining nodes 
·are calculated. Termination of the calculation. 
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EXAMPLE OF ApPLICATION 

Description of System 

In order to illustrate the described method let us use an example of a simple water 
cooling system sketched in Fig. la. This hydraulic system has a corresponding 
directed graph of 6 nodes and lO streams shown in Fig. lb. Description corresponding 
to Fig. 1 is given in Tables I and II. The pipeline network transports cooling water 
from a storage tank (node 1) into two heat exchangers (streams 3 and 4). At the 
same time this system serves as an emergency source of fire-extinguishing and techno
logical water. The flow rate in the former of the two exchangers is controlled to 
a constant value (stream 3) while the flow rate in the latter (stream 4) is not currently 
corrected and adjusts thus to current pressure conditions prevailing in the network_ 

P_ -- control 
--~ ---. --~ .. --------:-\l 

evaporation, 

~'ft \ 

i p-lBJ-1 
fresh ~I ~ 7 ~~-- Iz 
Not er + cb :t:;~ ___" .-

[mokeupj , i 'r ~ 'l' _-------- ~ 

~+-jr~ blow down, I 
I ~ mud discharge 

,//1,7//7771/11 / , 

_ "_ _L 
a 

to 

b 

FIG.! 

Cooling system. u Technological scheme, b oriented graph (denotation see in the text) 
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The water warmed in exchangers is fed to a wet cooling tower to be cooled to the 
initial temperature. The removal of heat from the cooling water in the tower takes 
place predominantly due to its evaporation into the atmosphere6 • Additional losses 
of water from the system occur by windage and drift or by sludge. The sum of these 
losses (flow rate m:) represents the sink of the given node marked in Fig. lb by 
a wavyline. The cooled water returns back by gravity into the storage tank (stream 10, 
node 1). Together with the returned cooling water the strorage tank enters fresh 
water compensating the losses (the source term of the balance node m!, in Fig. lb 
again marked by a wavyline). The cooling water is pumped by a pair of centrifugal 
pumps (streams 1 and 9) while, at present demand on cooling, one of the pumps 
is idled (stream 1). The described hydraulic system is thus opened via two nodes 

TABLE I 

Description of the graph of the network: streams 

Stream Initial Terminal Object of graph Cost 
node node 

1 1 2 pipe and pump (idled) 0 
2 2 3 pipe 4 
3 3 4 controlled flow exchanger 0 
4 5 4 uncontrolled flow exchanger 5 
5 6 5 pipe 8 

6 6 5 emergency outlet pipe 8 
7 6 3 pipe 7 
8 6 2 pipe 7 
9 1 6 pipe and pump 7 

10 4 1 pipe 4 

TABLE II 

Description of the graph of the network: nodes 

Node Object Degree of node 

1 Cooling water storage tank, source 2 
2 Pipe node 2 
3 Pipe node 2 
4 Cooling water and storage tank, sink 2 
5 Pipe node 3 
6 Pipe node 5 
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into the atmosphere (nodes 1 and 4). The gravitational transport of the returned 
cooling water from node 4 to node 1 is possible thanks to the higher elevation of the 
node 4 (difference between the level of the inlet of the warmed water into the cooling 
tower and the water level in the storage tank). 

Generation of the Balance Equations 

Upon assigning the edges their appropriate costs (in Table I specifically the sum 
of the number of degrees of both nodes, while eliminating the edges with fixed flow 
rate) one finds branches of maximum spanning tree of the graph in the following 
sequence: 5, 7, 8, 9, and 4. The corresponding sequence of the adjoining nodes is 
5, 6, 3, 2, 1, and 4. The found spanning tree is shown in Fig. 2. Now we are able to 
specify individual subvectors of the vector of mass flow rates as follows: 

(13a,b) 

(13c) 

In setting up the fundamental cutsets we shall make use (in the opposite sequence) 
of the sequence of the edges, originated in the process of forming the spanning tree 
of the graph. The resulting cutsets are shown in Fig. 3. By the first edge cut, encom
passing the branch 4 and the chords 3 and 10, we shall separate and balance the node 
4, obtaining thus, while respecting the source term, the following 

(0 0 0 0 1 10 0 -1 10 1) m = m: . (14a) 

Similarly we then proceed for the node 1 

node 2 

(0 0 0 1 0 I 0 0 -1 11 0) m = mr , (14b) 

(0 0 1 0 0 I -1 0 011 0) m = 0, (14c) 

4 

"IS} 
FIG. 2 

Maximum spanning tree of the graph of the 
network (sum of costs in brackets: 34) 
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and node 3 

(0 1 0 0 011 0 0 I 0 -1) m = o. (14d) 

In so far the performed cuts (in Fig. 3 designated as the first through the fourth cut) 
represented the separation and balancing of individual nodes of the starting graph. 
The last fundamental cutset (the fifth cut), encompassing the branch 5 and the 
chords 3, 6, 10, however, splits the starting connected graph into two (connected) 
components with nodes 1, 2, 3, and 6 and with nodes 4 and 5. The sequence of the 
fundamental cutset is always taken such as to have in the separated component 
of the graph always a single so far unbalanced node (see the above outlined method). 
In this case there is still the node 6 left to be balanced while by the combination with 
the earlier found equations of all other parts of the given component of the graph 
one obtains the overall balance equation of the cutset (nodes 1, 2, 3, and 6): 

(1 0 0 0 0 I 0 1 0 I 0 0) m = mt . (15) 

Instead of the node 6 in our case we could balance node 5 (also the only so far un
balanced node of the second component of the graph), to obtain another acceptable 
form of Eq. (15). 

The final result of the procedure of forming and balancing the fundamental cutsets 
is the identification of the matrix C and the vector Ai1m*. Summarizing Eqs (14) 

FIG. 3 

cut 3 
~ 
I 

10 

cut 4 
I-

Decomposition of the balance scheme by means of the fundamental cutsets (solid lines -
branches, thin lines - chords, broken lines - fundamental cutsets) 
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and (15) we thus obtain: 

[1 0 0 0 0 o 1 -1 
o 1 000 1 0 0 

C= 00100 -10 0 
00010 00 -1 
o 0 0 0 1 00 -1 

0 1 
o -1 
1 1 , 
1 0 
0 1 

Ho~(alek, VYbomy. Madron: 

m! 
o 

-A;lm* = 0 

m! m: 
(16a,b) 

without a priori knowledge of any other incidence matrix and without having to 
carry out numerical operations with its elements. Thus it is, in principle, not necessary 
to work with the whole matrix C (submatrix Cc is an identity matrix). 

Fixing the Characteristics 

Let us examine now the calculation of the elements ~, (Ie and RT, Re, representing 
parameters of the linearized characteristic of individual streams, the flow rate of 
which is to be identified by the given model. Using the Darcy-Weisbach relation 7 

and comparing it with Eq. (3) we obtain: 

(17) 

where 'J is the resistance coefficient. For a section of a straight pipe of length L 
and diameter D (the most common element of the pipeline network) we can rewrite 
this coefficient further as 

(l8a) 

while the friction coefficient in a tube, Aj , is obtained from the White-Colebrook 
equation 7, modified (to speed up the calculation) to the following explicit form 

(l8b) 

e.g. by EI-AbdaIla8 • For the case of so-called local resistances (e.g. measuring 
orifices, shut-off armatures, etc.) it is usually difficult to obtain the coefficient 'J 
with sufficient accuracy; reliable data can be obtained only by measurement of the 
arrangement in question. The results of measurements are, as a rule tabulated7 • 

The magnitude of the local resistance is often characterized, analogously to Eq. 
(1Sa) for straight pipes, by the so-called equivalent length lJ• The magnitude of this 
length may depend on the direction of the flow of liquid through the given resistance. 

Heat exchangers of the given cooling system represent generally a combination 
of both types of the resistances, i.e. the length as well as local ones. As an example, 
the tubular side of the exchanger (condenser) may thus be implemented into the 
graph as a sequence of several edges assigned for each passage, the resistances of the 
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inlet and outlet from the bunch of tubes, bending of the stream between individual 
passages and the tubes of the exchanger 7 • With the knowledge of the geometry of 
the exchanger one can find by current means (tables, model equations) corresponding 
values of (j' or Aj. For more extensive cooling systems with numerous exchangers 
it is convenient, keeping the reduction of the extent of the problem in mind, to regard 
each exchanger as a single local resistance (length of the exchanger being usually 
small compared to the length of the pipe) for which the course of the overall cha
racteristic (3) is evaluated before starting the calculation of the network. Similarly 
one can proceed, i.e. sum up the,resistances, also for other more complex armatures 
of the network. In case of the intertubular space of the exchanger (usually single-pass 
with baffles) one uses in the modelling of the dissipation empirical relations encom
passing geometrical as well as rheological properties of the exchanger. In order to 
avoid in our case description of the used exchangers we shall utilize here the simplest 
model of dissipation starting from the concept of equivalent length of the local resis
tance. 

An unusual element in the example under consideration is the section with gravita
tional flow of the returned cooling water. Provided that this motion of the cooling 
water is realized at the expense of the potential energy, one can characterize the 
stream as follows 

(19) 

where /).Z is the difference of the geodetic height between the initial and the terminal 
node of the given stream. 

The characteristic of the centrifugal pump is used in the usual form of an empirical 
equation for the operating height 

H· = a· + b·m· + c.mJ~l mj ~ 0 J J J J J .• ' 
(20a) 

(monotonously decreasing function of the flow rate through the pump), while from 
comparison with the characteristic (3) we can derive 

(20 b) 

The calculation proper. The input and output data of the model are given in Tables III and IV. 
In the calculation we have considered sections of the pipe of length L = 100 m and diameter 
D = 0·4 m with absolute roughness 8 = 0·004 m. Only for the exchanger with uncontrolled 
flow rate of water (stream 4) did we fix the overall length (the length of the pipe plus the equi
valent length of the exchanger) at 1000 m. The overall drop of the stream 10 was taken 20 m. 
Two flow rates of the cooling water are fixed in the network: zero flow rate of the stream 1 
(idled pump) and the flow rate 250 kg/s of the stream 3 (currently maintained flow rate in the 
exchanger). The temperature of the cooling water was for all streams considered 20°C; in prin-
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ciple, however, this temperature may be fixed for each stream individually. There is one source 
of water defined in the network of strength SO kg/s (node 1) and equal sink (-SO kg/s in node 4). 

In the calculation we have executed altogether six iterative steps while the parameter, defined 
in Eq. (12a), decreased down to M = 0·000130. The result of the calculation was the knowledge 
of the flow rates and pressure losses in all sections of the modelled network (Table ill). In fixing 
the geodetic height zi of individual nodes one can utilize the computed pressure losses for the 
calculation of pressure in individual nodes (quantity Hi in Table IV). For the reference pressure 
we took the pressure in the node 1 (H 1 = 0 m). 

TABLE III 

Parameters of the system: streams. D j = 0·4 m, 8j = 0·004 m, tj = 20°C 

Input data Resultsa 

Streams 
---- _. --" ,--~---

L j + I j Zj mj aj 103 _ bj 106 _ Cj mj hj 

m m kg/s m ms/kg ms2 /kg2 kg/s m 

1 0 0 -42-46 
2 100 0-001 103-53 -I-53 
3 250 250 20-93 
4 1000 0-001 128-08 23-40 
5 100 0-001 64-06 0-59 
6 100 0-001 64-06 0-59 
7 100 0-001 146-47 3-06 
8 100 0-001 103-53 I-53 
9 100 0-001 68-00 0-500 0-050 378-08 -43-99 

10 20 0-001 328-08 20-00 

a 6-th iteration: M = 0-000130, N = 0-499935_ 

TABLE IV 

Parameters of the system: nodes 
--------------~ --~------ --~-~ 

Node 
Parameter 

1 2 3 4 5 6 

m:,kgs- 1 50-0 ~- 50-0 

zi' nl 0 0 20 20 20 0 

Hi,m 0 42-4 20-9 0 23-4 43-9 

---~ 
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DISCUSSION 

The application of the just described model to the dimensions of real cooling 
systems is practically solely a matter of computer technique. The computational 
procedure was therefore processed into the form of a computer program "SIT". 
written in BASIC 2 and debugged on a WANG 2 200 computer. The program 
makes use of the capability of the computer to work with alphanumeric strings9 • 

In case that one works with nonnegative integers up to 255, these can be easily 
transformed into a symbolic form and the storage in the computer memory as ele
ments of the string (alphanumeric variable) is then a great deal more efficient than 
in the usual case of a numeric variable. In such a way one can conveniently fix the 
topology of the system (altogether three vectors containing in the appropriate 
sequence numbers of streams, initial and terminal nodes). Of particular significance 
is this option in the case of the components of matrix of fundamental cutsets Ce• 
CeG, whose elements may assume only three values (0,1, and -1). A nonnegligible 
feature of the work with alphanumeric strings is the high speed of operation. 

Additional savings of the internal computer memory in the program are achieved 
by respecting the specific properties of numerical matrices of the given model. 
Instead of the diagonal matrices RT and Re the program works with only the vectors 
of their diagonal elements rT , re. The calculation of the symmetrical matrix A is 
then programmed individually (not with the aid of standard operations with matrices) 
in such a way that we confine ourselves to elements of the triangular submatrix 
(shortening of the computation, saving of the memory). The set of linear equations 
(9) is then solved for the unknown vector mc by decomposition according to Cho
leskylo. 

Respecting the above outlined principles permitted with using of about 55 kB 
of internal memory of the WANG 2 200 to solve the model of the pipeline network 
of cooling water consisting of 189 streams and 65 circuits (none of the internal flow 
rates was fixed). Seven iteration steps sufficed to achieve the requested accuracy 
of the solution (M = 0'000092). 

Among the advantages of the given model is the simple (vectorial way of setting 
up the topology of the system serving, in a very rapid way without resorting to 
numerical operations, to formulate the balance equations of the model. The model 
further permits, depending on the need (e.g. cooling), or results of measurements 
in the network to fix certain flow rates within the network. 

Possible changes of the statement of the problem from the standpoint of its topo
logy and the flow rates within it, as well as the characteristics of the elements may 
thus be easily realized without having to modify the procedure itself. Apart from 
direct modifications by the operator there is the possibility of generating these modi
fications by the control program here. The given model may thus be used, for in
stance, within the framework of optimization calculations, necessitating solutions 
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of a number of alternatives of the topology, characteristics and flow rates. The aim 
of the calculation is to find such a network ensuring cooling at minimum total costs. 
The hydraulic calculation then predicts the conditions of the work for each arrange
ment (flow rate, operating height of the pumps, pressure losses in control armatures, 
exchangers, etc.). The model may thus find application even in the control of the 
operation of the cooling system. 

The model may, in principle, be used also for description of pipeline networks 
other than for the cooling water. The formulation of the balance equations has 
a general character and may thus be used regardless of the hydraulic properties of the 
streams ( one-component balance). The model may contingently be expanded by 
enthalpy balances of nodes of the network, permitting, with the known temperatures 
of the external input fluxes and cooling power of individual coolers, calculation of 
temperatures of individual streams in the system. This option would be of significance 
particularly in case of more complex utilization of the cooling water in the system, 
for instance as a cascade of coolers. 

The contribution of the just described method in particular is the efficient and 
rapid graph approach to generating the balance equations of the model of the system. 
Expansion of the model by the option of fixing some internal streams in the network 
facilitates modification of the conditions of operation of the network without having 
to change the topology of the system. A certain contribution is already the applica
tion of the method of hydraulic modelling to a water cooling system. A valuable 
finding is that the given model accepts also such transportation routes for liquid 
which are rather strange in conventional pipeline networks, for instance open 
troughs for gravitational transport of warmed water. In case of difficulties with 
convergence one can implement modifications in the method of setting up the 
spanning tree of the graph of the network. For instance, one can adopt a different 
method of costing the edges or expand the method by the optimization of the spanning 
trees. Contingently, one can also modify the calculation of the damping factor. 
The cause for the failure of the calculation may, however, rest in the very subject 
as for certain conditions of the calculation the method need not have a real solution 1. 

The calculation can be performed on personal computers of current category. 

LIST OF SYMBOLS 

A reduced incidence matrix of nodes of graph 
a parameter of pump defined in Eq. (20), m 
B incidence matrix of fundamental circuits of graph 
b parameter of pump defined in Eq. (20), m s/kg 
C fundamental cutsets matrix of the graph 
c parameter of pump defined in Eq. (20), m s2/kg2 

D internal diameter of pipe, m 
E number of edges of graph 

Collection Czechoslovak Chern. Con.rnun. (Vol. 53) (1988) 



Water Cooling System 805 

g acceleration due to gravity, m/s2 

H operating head of pump, m 
h vector of pressure losses by dissipation of mechanical energy in streams, m 
L length of pipe, m 

equivalent length, m 

M parameter defined in Eq. (J 2a) 
m vector of mass flow rates of streams in graph, kg/s 
m* vector of sources in nodes of graph, kg/s 
N damping factor defined in Eq. (12b) 
0, 0 zero matrix, zero vector 
r vector of diagonal elements R, m s/kg 
R diagonal matrix defined in Eq. (8), m s/kg 
Re Reynolds number 
t temperature, °C 
U identity matrix 
V number of nodes (vertices) in graph 
z geodetic height, m 
IX vector of parameters defined by Eq. (3), m 
p vector of parameters defined by Eq. (3). m s/kg 
r vector of parameters defined by Eq. (3), m s2/kg2 

L1 matrix of set (9), m s/kg 

o vector of right hand sides of set (9), m 
c roughness of pipe, m 
A coefficient of friction in straight pipe 
, coefficient of resistance 
(! density of liquid, kg/m3 

Subscripts 

C columns of matrix or elements of vector corresponding to chords with sought flowrate 
CG columns of matrix or elements of vector corresponding to chords with given (fixed) flow 

rate 
general subscript (usually number of node) 

j general subscript (usually number of stream) 
k general subscript (usually number of circuit) 
T columns of matrix or elements of vector corresponding to branches of spanning tree 

of graph 

Superscripts 

input datum of approximation 
T transposed matrix 
- I inverse matrix 
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